3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
- Input: nums = [-1, 0, 1, 2, -1, -4]
- Output: [[-1, -1, 2], [-1, 0, 1]]
- Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
- Input: nums = [0, 1, 1]
- Output: []
- Explanation: The only possible triplet does not sum up to 0.
Example 3:
- Input: nums = [0, 0, 0]
- Output: [[0, 0, 0]]
- Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-10⁵ <= nums[i] <= 10⁵
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
sort(nums.begin(), nums.end()); // sort
vector<vector<int>> result;
for (int i = 0; i < nums.size() && nums[i] <= 0; ++i) {
if (i > 0 && nums[i] == nums[i-1]) continue; // Skip duplicate values for nums[i]
int left = i + 1, right = nums.size() - 1;
while (left < right) {
int sum = nums[i] + nums[left] + nums[right];
if (sum < 0) ++left;
else if (sum > 0) --right;
else {
result.push_back({nums[i], nums[left], nums[right]});
while (left < right && nums[left] == nums[left+1]) ++left;
while (left < right && nums[right] == nums[right-1]) --right;
++left; --right;
}
}
}
return result; // Return the list of unique triplets that sum up to 0
}
};
This post is licensed under CC BY 4.0 by the author.